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An efficient model reduction technique for non-linear compressible flow equations is proposed. The ap-
proach is based on the continuous Galerkin projection approach, in which the continuous governing equations
are projected onto the reduced basis modes in a continuous inner product. It is an extension of the provably-
stable model reduction methodology developed previously1–3, 13 for the linearized compressible flow equations
to the non-linear counterparts of these equations. Attention is focussed on two challenges that arise in devel-
oping reduced order models (ROMs) for the full Navier-Stokes equations: stability and efficiency. The former
challenge is addressed through the introduction of a transformation into the so-called “entropy variables”. It
is shown that performing the Galerkin projection step of the model reduction procedure in these variables
leads to a ROM that obeys a priori the second law of thermodynamics, or Clausius-Duhem inequality. In this
way, the ROM preserves an essential stability property of the governing equations, that of non-decreasing en-
tropy in the solution. Although the discussion assumes that the reduced basis is constructed via the proper
orthogonal decomposition (POD), the entropy stability guarantee holds for any choice of reduced basis, not
only the POD basis. The challenge of ensuring that the model reduction technique is efficient in the pres-
ence of non-linearities is addressed using the “best points” interpolation method (BPIM) of Peraire, Nguyen et
al.16, 17 To help gauge the viability of the proposed model reduction, some preliminary numerical studies are
performed on two non-linear scalar conservation laws whose solutions possess inherently non-linear features,
such as shocks and rarefactions: the Burgers equation and the Buckley-Leverett equation.

Nomenclature

ρ = Fluid density
ui = Fluid velocity in the ith coordinate direction, i = 1,2,3
δi j = Kronecker delta (δi j = 1 if i = j, δi j = 0 otherwise)
θ = Absolute temperature
cv, cp = Specific heat at constant volume, pressure
ı = Internal energy density (ı = cvθ )
e = Total energy density (e = ı+ 1

2 uiui)
γ = Ratio of specific heats (γ = cp/cv)
p = Fluid pressure (p = (γ −1)ρı)
λ , µ = Viscosity coefficients
τi j = Viscous stress (τi j = λuk,kδi j + µ(ui, j +u j,i))
κ = Heat conductivity
Pr = Prandtl number (Pr = µcp/κ)
qi = Heat flux (qi = −κθ,i)
η = Thermodynamic entropy density per unit mass
s = Nondimensional entropy (assumed to satisfy Gibbs’ equation: s ≡ η/cv = ln(pρ−γ)+ const)
t = Time
x = Position vector in Cartesian coordinates

(

xT =
(

x1, x2, x3

))

n = Unit normal vector
(

nT =
(

n1, n2, n3

))
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Ω = Open, bounded domain
∂Ω = Boundary of Ω
∂ΩW = Solid wall boundary of Ω
U = Vector of fluid conversation variables

(

UT =
(

ρ, ρu1, ρu2, ρu3, ρe
))

Fi = Convective (or Euler) flux in the conservation variables U in the ith coordinate direction, i = 1,2,3
Fν

i = Viscous flux in the conservation variables U in the ith coordinate direction, i = 1,2,3
Fh

i = Heat flux in the conservation variables U in the ith coordinate direction, i = 1,2,3
Ai = Advective Jacobian matrices with respect to conservation variables U, i = 1,2,3
Kν

i j = Viscous flux matrices in the conservation variables U, 1 ≤ i, j ≤ 3
Kh

i j = Heat flux matrices in the conservation variables U, 1 ≤ i, j ≤ 3
Ki j = Diffusivity matrices in the conservation variables U, 1 ≤ i, j ≤ 3 (Ki j = Kν

i j +Kh
i j)

H(U) = Generalized entropy function
σi(U) = Entropy flux in the ith coordinate direction, i = 1,2,3
V = Vector of fluid entropy variables (VT = H,U)
A0 = Riemannian metric tensor (A0 = U,V)
F̃i = Convective (or Euler) flux in the entropy variables V in the ith coordinate direction, i = 1,2,3
F̃ν

i = Viscous flux in the entropy variables V in the ith coordinate direction, i = 1,2,3
F̃h

i = Heat flux in the entropy variables V in the ith coordinate direction, i = 1,2,3
Ãi = Advective Jacobian matrices with respect to entropy variables V, i = 1,2,3
K̃ν

i j = Viscous flux matrices in the entropy variables V, 1 ≤ i, j ≤ 3
K̃h

i j = Heat flux matrices in the entropy variables V, 1 ≤ i, j ≤ 3
K̃i j = Diffusivity matrices in the entropy variables V, 1 ≤ i, j ≤ 3 (K̃i j = K̃ν

i j + K̃h
i j)

K̃ = Augmented diffusivity matrix in the entropy variables V (block (i, j) given by K̃i j, 1 ≤ i, j ≤ 3)
L = Linear spatial differential operator
N = Non-linear spatial differential operator
R = Self-adjoint and positive semi-definite operator defining POD eigenvalue problem Rφ = λφ
K = Number of snapshots
∆tsnap = Spacing between snapshots
N = Number of spatial discretization points
∆x = Spacing between spatial discretization points
M = Size of reduced basis
aM = Vector of time-dependent ROM model amplitudes (coefficients)

(

aT
M ≡

(

a1(t), · · · , aM(t)
))

φφφ m(x) = Reduced basis modes for the fluid vector in the entropy variables V, m = 1, ...,M
H M(Ω) = M-dimensional POD subspace spanned by M POD modes
φφφN

m (x) = Reduced basis modes for a non-linear function N , m = 1, ...,M
ψψψN

m (x) = Cardinal functions for a non-linear function N , m = 1, ...,M
xN

m = Interpolation points for a non-linear function N , m = 1, ...,M
f = Vector-valued non-linear function
S V = Set of snapshots for the entropy variables V
S f = Set of snapshots for the non-linear function f
ΓΓΓ = Positive definite matrix of stabilization/shock-capturing parameters
M = M×M mass matrix arising in the semi-discrete ROM system with interpolation
Df = 5M×M matrix arising in the semi-discrete ROM system containing the basis functions evaluated at the

interpolation points for the non-linear function f
Gf = M×5M matrix arising in the semi-discrete ROM system containing inner products of the interpolation

and cardinal functions for the non-linear function f
Subscript
i = Variable number
M = Approximation expanded in a reduced basis of order M ∈ N

, i = Differentiation with respect to xi, i = 1,2,3
(

∂
∂xi

)

, t = Differentiation with respect to t
(

∂
∂ t

)

∂ΩW = Integration over ∂ΩW
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h = High-fidelity solution

Superscript
T = Matrix or vector transpose operation
no-slip = Application of the no-slip boundary condition
adiabatic = Application of the adiabatic wall boundary condition
bp = “Best” interpolation points
N = Interpolation points for the non-linear function N
k = kth snapshot

I. Introduction

Despite the development of increasingly sophisticated “high-fidelity” computational fluid dynamics (CFD) tools and
improved numerical methods, direct simulation of three-dimensional unsteady flow at high Reynolds and Mach num-
bers is in practice often too computationally expensive for use in a design or analysis setting. This situation has
motivated the formulation of techniques that retain the essential physics and dynamics of a high-fidelity model, but
at a much lower computational cost. The basic idea of these “Reduced Order Models” (ROMs) is to use a relatively
small number of solutions generated by a high-fidelity simulation to construct a model that is much cheaper compu-
tationally, one that could be solved in real or near-real time for use in applications where simulations must be run for
on-the-spot decision making, optimization, and/or control. Reduced order models can enable and enhance the under-
standing of complex fluid systems and non-linear dynamics in turbulent flows at a relatively low computational cost.
Reduced order models are also attractive in predictive applications involving design and/or analysis, for example, flow
controller design,27 shape optimization,28 aeroelastic stability analysis,30, 31 and the study of structural, aerodynamic
and aeroelastic systems’ responses to parameter variations.32, 33

In recent years, numerous approaches to building ROMs have been proposed, each with its own inherent strengths,
among them the Proper Orthogonal Decomposition (POD)/Galerkin method,9–11 the reduced basis method,20 balanced
truncation,21, 22 and goal-oriented ROMs.26 The use of ROMs in a predictive setting raises some fundamental questions
regarding these models’ numerical properties, in particular, their stability, consistency and convergence. General
results for any of the three aforementioned numerical properties are lacking for POD/Galerkin models of compressible
fluid flow. This leads to practical limitations of ROMs in predictive applications; for example, a ROM might be stable
for a given number of modes, but unstable for other choices of basis size, as shown in Bui-Thanh et al.26 and Barone,
Kalashnikova et al.1–3, 13

The present work is focused on techniques for building stable and efficient reduced order models for compressible
flows. More specifically, a model reduction procedure based on the Proper Orthogonal Decomposition (POD)/Galerkin
method is developed for the full non-linear compressible Navier-Stokes equations. These equations are required over
their simpler linearized counterparts to describe satisfactorily compressible flows at transonic, supersonic and hyper-
sonic Mach numbers, where viscous and non-linear effects (e.g., boundary layers, shocks, turbulence) are significant.

In order to be useful in predictive, real-time applications, a ROM for a non-linear set of equations, such as the
formidable Navier-Stokes equations, is desired to have the following properties:

1. The ROM numerical solution should be bounded in a way that is consistent with the behavior of the exact
solutions to the governing equations, i.e., the ROM should be stable.

2. The non-linear terms in the ROM should be handled in a way that does not invalidate the label reduced order
model, i.e., the ROM should be efficient.

Although the task of developing a stable and efficient reduced order model is a particularly challenging one in the
context of non-linear equations, some progress has been made in recent years.17, 23, 24, 28, 29, 36 Non-linear projection
approaches for POD-based reduced order models for aerodynamics applications were investigated by LeGresley et
al.28 It was demonstrated by these authors that a non-linear ROM system can be solved efficiently using various
least squares approximation methods. A Petrov-Galerkin method for reducing the dimension of non-linear static or
dynamic computational models in real-time based on a least-squares residual minimization algorithm and the Gappy
POD method25 was proposed by Carlberg, Farhat et al.24 Numerical tests revealed that this ROM can be robust, stable
and accurate in difficult non-linear problems such as the prediction of turbulent flow. A POD/Galerkin ROM for the
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compressible flow equations that preserves the stability of an equilibrium point at the origin has been developed by
Rowley et al.23 The non-linearities in the governing equations were tackled by employing an approximate, isentropic
version of the equations in which only quadratic terms appeared.

In effect, this paper presents an extension of the provably-stable model reduction techniques developed previously
specifically for the linearized, compressible Euler equations1–3, 13 to equations of non-linear and viscous compressible
flows. As shown in these earlier works,1–3, 13 the maintenance of a proper energy balance is crucial to building a
stable reduced order model. For the non-linear Euler or Navier-Stokes equations, the energy method goes hand in
hand with the second law of thermodynamics, or the Clausius-Duhem inequality (Section IV), which essentially states
that the entropy of a system is non-decreasing. An a priori entropy stability analysis (Section V) of the ROM is made
possible by the fact that the proposed model reduction technique is based on the “continuous projection” approach: the
continuous, governing partial differential equations (PDEs) are projected onto the reduced basis modes in a continuous
inner product1–3, 13, 14, 20, 36 (Section II). A continuous representation of the reduced basis allows the use of entropy
stability analysis techniques employed in the finite element12, 37–42 and finite volume5, 8 communities to build stable
numerical schemes for non-linear conservation laws, in particular the former, due to the close resemblance of the
Galerkin-projected ROM equations to a finite element variational formulation. It is demonstrated that, by developing
an appropriate transformation (symmetrization) of the governing equations into the so-called “entropy variables”, and
building the ROM in the entropy variables, it can be guaranteed that the Clausius-Duhem inequality is necessarily
satisfied ab initio for all Galerkin ROM numerical solutions constructed for these equations. The ROM thereby
preserves an essential stability property of the governing equations, that of non-decreasing entropy in the solution.
This result holds for any reduced basis selected to represent the solution. To maintain efficiency, the second property
desired of the ROM, the non-linear terms appearing in the Navier-Stokes equations are handled using the “best points
interpolation method” (BPIM) proposed by Peraire, Nguyen et. al.16, 17 (Section III). To gauge the viability of the
proposed model reduction procedure and the effectiveness of the BPIM applied to non-linear fluid equations whose
solutions exhibit phenomena such as shocks and rarefactions, POD/Galerkin ROMs are constructed and evaluated
numerically for two scalar non-linear conservation laws: the Burgers equation and the Buckley-Leverett equation
(Section VI).

II. The POD/Galerkin Approach for Model Reduction

This section contains a brief overview of the Proper Orthogonal Decomposition (POD)/Galerkin method for reducing
the order of a complex physical system governed by a general set of PDEs. The approach consists of two steps:

1. Calculation of a reduced basis using the proper orthogonal decomposition of an ensemble of flow field realiza-
tions, followed by

2. The Galerkin projection of the governing partial differential equations (PDEs) onto the reduced basis.

When successful, the result of this procedure is a set of time-dependent ordinary differential equations (ODEs) in the
modal amplitudes that accurately describes the flow dynamics of the full system of PDEs for some limited set of flow
conditions.

The first step in the model reduction procedure is the calculation of a reduced basis using the POD of an ensemble of
realizations from a high-fidelity simulation. Discussed in detail in Lumley15 and Holmes et. al.,9 POD is a mathemat-
ical procedure that, given an ensemble of data, constructs a basis for that ensemble that is optimal in the sense that
it describes more energy (on average) of the ensemble than any other linear basis of the same dimension M. In the
present context, the ensemble {uk(x) : k = 1, . . . ,K} is a set of K instantaneous snapshots of a high fidelity numerical
solution field. Mathematically, POD seeks an M-dimensional (M << K) subspace H M(Ω) spanned by the set {φi}
such that the projection of the difference between the ensemble uk and its projection onto H M(Ω) is minimized on
average. It is a well known result1, 9, 14, 19 that the solution to this optimization problem reduces to the eigenvalue
problem Rφ = λφ where R ≡ 〈uk ⊗uk〉 is a self-adjoint and positive semi-definite operator. It can be shown9, 15 that
the set of M eigenfunctions, or POD modes, {φi : i = 1,2, . . . ,M} corresponding to the M largest eigenvalues of R is
precisely the set of {φi} that solves the aforementioned POD optimization problem. Given this basis, the numerical
ROM solution uM can be represented as a linear combination of POD modes

uM(x, t) =
M

∑
j=1

a j(t)φ j(x), (1)
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where the a j(t) are the so-called ROM coefficients, to be solved for in the ROM.

The second step in constructing a ROM involves projecting the governing system of PDEs onto the reduced basis {φi}
in some appropriate inner product, denoted generically (for now) by (·, ·). In this step, the full-system dynamics are
effectively translated to the implied dynamics of the POD modes. If the governing system of equations for the state
variable vector u has the form

∂u
∂ t

= L u+N2(u,u)+N3(u,u,u), (2)

where L is a linear differential operator, and N2 and N3 are (non-linear) quadratic and cubic operators respectively,
then the Galerkin projection of (2) onto the POD mode φ j for j = 1,2, ...,M is

(

φ j,
∂uM

∂ t

)

= (φ j,L uM)+(φ j,N2(uM,uM))+(φ j,N3(uM,uM,uM)) . (3)

Substituting the POD decomposition of uM (1) into (3) and applying the orthonormality property of the basis func-
tions φi in the inner product (·, ·) gives a set of time-dependent ordinary differential equations (ODEs) in the modal
amplitudes (also referred to as the ROM coefficients) that accurately describes the flow dynamics of the full system of
PDEs for some limited set of flow conditions:

da
dt

≡ ȧ j =
M

∑
l=1

al(φ j,L (φl))+
M

∑
l=1

M

∑
m=1

alam(φ j,N2(φl ,φm))+
M

∑
l=1

M

∑
m=1

M

∑
n=1

alaman(φ j,N3(φl ,φm,φn)), (4)

for j = 1,2, . . . ,M.

It is emphasized that the approach described herein is based on a Galerkin projection of the continuous governing
partial differential equations, in common with the perspective of, for example, Barone, Kalashnikova et al.1–3, 13, 14

This “continuous projection” approach differs from many POD/Galerkin applications, where the semi-discrete repre-
sentation of the governing equations is projected, and numerical analysis proceeds from the perspective of a dynamical
system of ordinary differential equations. The continuous projection approach has the advantage that the ROM solu-
tion behavior can be examined using methods that have traditionally been used for numerical analysis of spectral,6, 7

finite volume5, 8 and finite element12, 37–42 approximations to partial differential equations, such as the techniques em-
ployed herein in examining stability. Unlike in the discrete approach, however, in the continuous approach, boundary
condition terms present in the discretized equation set are not in general inherited by the ROM.

III. Interpolation of Non-Linear Terms

The cost of forming the reduced ODE system (4) depends on the nature of the non-linearities in the original set of
equations (2). Consider the general non-linear initial boundary value problem (IBVP)

∂u
∂ t

+L u+N (u) = f , (5)

where L is a linear operator, N is a non-linear operator, and f is some source depending on space only (not a function
of u). Projecting (5) onto the jth reduced basis mode, for j = 1, ...,M modes gives rise to a system of ODEs of the
form

ȧM = F−LaM −N(aM), (6)

where aT
M ≡

(

a1, ... aM

)

, Li j ≡ (L φ j,φi), Fi ≡ ( f ,φi) for i, j = 1, ...,M and

Ni(aM) ≡

(

N

(
M

∑
k=1

akφk

)

,φi

)

, i = 1, ...,M. (7)

The inner products in (7) cannot be pre-computed prior to time-integration of the ROM system (6) if N contains
a strong, e.g., a non-polynomial, non-linearitity. The cost of performing the required inner product is in general of
O(N), where N is the number of spatial discretization points, which is usually quite large (N >> M). Hence, “direct”
treatment, or computation, of these inner products can greatly reduce the efficiency of this ROM, and motivates the
consideration of some alternative way to handle the non-linearity in (5).
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To recover efficiency, the “best points” interpolation of Peraire, Nguyen et al.,16, 17 a technique based on a coefficient
function approximation for the non-linear terms in (5), is employed. The general procedure is outlined in this section,
and revisited in Section V.D in the context of the Navier-Stokes equations.

Suppose K snapshots have been taken of the unknown field u, at K different times (Step 1 of the POD/Galerkin
approach for model reduction outlined in Section II):

S
u ≡ {ξ u

k (x) = uk
h(x) : 1 ≤ k ≤ K}. (8)

Given this set of snapshots of the field u, the following set of snapshots of the non-linear function N appearing in (5)
are constructed:

S
N ≡ {ξ N

k (x) = N (uk
h(x)) : 1 ≤ k ≤ K}. (9)

The best approximations of the elements in the snapshot set are now defined as

N
∗

M (uk
h(·)) = argminwM∈span{φN

1 ,...,φN
M }||N (uk

h(·))−wM||, 1 ≤ k ≤ K, (10)

where {φN
m }M

m=1 is an orthonormal basis for N , and || · || denotes the norm induced by the inner product (·, ·) in which
the POD basis is constructed. Orthonormality of the φ N

m implies that

N
∗

M (uk
h(x)) =

M

∑
m=1

αk
mφN

m (x), 1 ≤ k ≤ K, (11)

where
αk

m = (φN
m ,N (uk

h(·))), m = 1, ...,M,1 ≤ k ≤ K. (12)

The “best” interpolation points,16, 17 denoted by {xbp
m }M

m=1, are defined as the solution to the following optimization
problem:

min
xbp

1 ,...,xbp
M ∈Ω ∑K

k=1

∣
∣
∣

∣
∣
∣N

∗
M (uk

h(·))−∑M
m=1 β k

m(xbp
1 , ...,xbp

M )φN
m

∣
∣
∣

∣
∣
∣

2
,

∑M
n=1 φN

n (xbp
m )β k

n (xbp
1 , ...,xbp

M ) = N (uk
h(x

bp
m )), 1 ≤ m ≤ M,1 ≤ k ≤ K,

(13)

i.e., the set of points {xbp
m }M

m=1 is determined to minimize the average error between the interpolants NM(·) and the
best approximations N ∗

M (·). Substituting (11) into (13) and invoking the orthonormality of the {φ N
m }M

m=1 gives

min
xbp

1 ,...,xbp
M ∈Ω ∑K

k=1 ∑M
m=1(αk

m −β k
m(xbp

1 , ...,xbp
M ))2,

∑M
n=1 φN

n (xbp
m )β k

n (xbp
1 , ...,xbp

M ) = N (uk
h(x

bp
m )), 1 ≤ m ≤ M,1 ≤ k ≤ K.

(14)

The solution to the least-squares optimization problem (14) can be found using the Levenberg-Marquardt (LM) algo-
rithm, and is typically reached in less than fifteen iterations of the algorithm.17

Given the “best points” for N , i.e., the solutions to (14) (or any set of interpolation points), denoted by
{

xN
m

}M
m=1, it

is straightforward to apply the interpolation procedure16, 17 to the non-linear function N (u) that appears in (5). The
first step is to compute snapshots for the non-linear function N in (5). From these snapshots the interpolation points
{

xN
m

}M
m=1 are determined following the approach outlined above and in Section 2 of Peraire, Nguyen et al.17 Given

{
xN

m

}M
m=1 and

{
φN

m

}M
m=1, the so-called “cardinal functions”, denoted by

{
ψN

m

}M
m=1, are computed by solving the

following linear systema

φφφN
M (x) = AψψψN

M (x), (15)

where φφφN
M (x) =

(
φN

1 (x), ...,φN
M (x)

)T and ψψψN
M (x) =

(
ψN

1 (x), ...,ψN
M (x)

)T , and Ai j = φN
j (xN

i ), with the cardinal
functions satisfying ψ j(xN

i ) = δi j.

Given the interpolation points {xN
m } and the cardinal functions {ψN

m }, the non-linear function N is approximated as:

N (u) ≈ NM(u) =
M

∑
m=1

N

(

uM

(

xN
m , t

))

ψN
m ∈ R, (16)

aNote that, for A to be invertible, the number of interpolation points must be equal to the number of modes M. A non-linear least squares
optimization problem may be formulated if it is desired to have more interpolation points than modes M, but this latter approach is not considered
in the present work.
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so that

NM(u) =
M

∑
m=1

N

(
M

∑
n=1

an(t)φn

(

xN
m

)
)

ψN
m , (17)

where {φm(x) : m = 1, ...,M} is an orthonormal basis for the solution u, computed from the snapshots (8).

The projection of NM(u) onto the lth POD mode for u can be written in matrix/vector form, by noting first that, for
l = 1, ...,M:

(φl ,NM(u)) =
(
φl ,∑M

m=1 N
(

∑M
n=1 an(t)φn(xN

m )
)

ψN
m

)
= ∑M

m=1
[∫

Ω φlψN
m dΩ

]
N
(

∑M
n=1 an(t)φn(xN

m )
)
. (18)

It follows that, with the interpolation procedure employed here, the ROM ODE system for the vector of modal ampli-
tudes aM is not (6) but rather

ȧM = F−LaM −GN
N (DN aM), (19)

where GN is an M×M matrix whose entries are given by

GN
i j =

∫

Ω
φiψN

j dΩ, (20)

and DN
i j = φ j(xN

i ) for i, j = 1, ...,M.

Essentially, in the BPIM, recomputation of inner products (projection) of the non-linear terms at each time (or Newton)
step is replaced by evaluation of the basis functions at the interpolation points. These interpolation points are pre-
computed and much fewer in number than N, the number of spatial grid points. Hence, with interpolation, the cost
of each step of the online time-integration step of the model reduction procedure is of O(M) – compared to O(N)
for the model reduction procedure without interpolation. Since M << N in practice, the savings gained in employing
the interpolation can be substantial, especially if the governing equation set possesses a strong non-linearity. The
computational complexity of the “best points” interpolation algorithm is discussed in detail in Peraire, Nguyen et
al.16, 17

IV. Inner Product and Entropy Stability

The discussion in Sections II and III has assumed a generic inner product (·, ·), and a projection of the governing
equations in the given state variables. As it turns out, the inner product employed in the Galerkin projecion step can
be closely related to the numerical stability of the resulting reduced order model. This is because the inner product
is a mathematical expression for the energy in the ROM. The majority of POD/Galerkin models for fluid flow use as
the governing equation set the incompressible Navier-Stokes equations. Because in these models the solution vector is
taken to be the velocity vector u, so that ||u||L2(Ω) is a measure of the global kinetic energy in the domain Ω, the natural
choice of inner product for these equations is the L2(Ω) inner product. In effect, the L2(Ω) inner product is physically
sensible for these equations: the POD modes optimally represent the kinetic energy present in the ensemble from which
they are generated. The same is not true for other equations arising in fluid mechanics. For example,1–3, 13 the L2(Ω)
inner product does not correspond to an energy integral for the linearized compressible Euler equations, meaning if
it is selected as the inner product defining the projection, the ROM does not satisfy the energy conservation relation
implied by the governing equations. For these equations, a symmetry transformation is required to yield a stable
approximation. This transformation motivates the construction of a weighted L2(Ω) inner product that guarantees
certain stability bounds satisfied by the ROM solution.1–3, 13

The aim of the present work is to employ a stability analysis akin to the stability analysis performed earlier by Barone,
Kalashnikova et al.1–3, 13 to develop a non-linear Galerkin ROM whose numerical solution is bounded in a way
consistent with behavior of exact solutions of the original non-linear differential equations, i.e. it is stable. Stability
can be ensured by the energy method.5, 12 For the full (non-linear) Euler or Navier-Stokes equations, the energy method
is closely tied to the second law of thermodynamics, or the Clausius-Duhem inequality, namely

d
dt

∫

Ω
ρηdΩ ≥−

∫

∂ΩW

qini

θ
dS, (21)

where η is the thermodynamic entropy density per unit mass, ρ is the fluid density, qi is the heat flux in the ith

coordinate direction, and θ is the absolute temperature. (21) essentially states that the entropy of the system is non-
decreasing. For the non-linear equations of fluid mechanics, energy estimates, or the satisfaction of the entropy
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inequality (21), imply that the semi-discrete solutions possess stability properties akin to those of the exact solutions
of the governing equations.5, 12, 42 Solutions that satisfy (21) will be referred to as “entropy stable”. The aim of Section
V is to develop a transformation (symmetrization) of the equations into the so-called “entropy variables” such that the
Clausius-Duhem inequality (21) is necessarily satisfied for a Galerkin ROM constructed with any choice of reduced
basis for the compressible Navier-Stokes equations in these variables.

V. An Entropy Stable and Efficient Reduced Order Model (ROM) for the 3D
Compressible Navier-Stokes Equations

A. Governing Equations

In terms of the so-called conservation variables U, the three-dimensional (3D) Navier-Stokes equations for compress-
ible flow can be written as (neglecting forces)12

U,t +Fi,i = Fv
i,i +Fh

i,i, (22)

where

U ≡










U1
U2
U3
U4
U5










≡










ρ
ρu1
ρu2
ρu3
ρe










, (23)

Fi = uiU+ p










0
δ1i

δ2i

δ3i

ui










, Fv
i =










0
τ1i

τ2i

τ3i

τi ju j










, Fh
i =










0
0
0
0

−qi










, (24)

for i = 1,2,3. Fi is known as the convective or Euler flux, Fv
i is the viscous flux, and Fh

i is the heat flux. The variables
and parameters appearing in (23)–(24) are defined in the “Nomenclature” section of this paper. The specific heats are
assumed to be positive constants. Moreover, it is required that µ ≥ 0, λ + 2

3 µ ≥ 0, and κ ≥ 0.

(22) is the conservative form of the 3D compressible Navier-Stokes equations. These equations can also be written in
non-conservative form as

U,t +AiU,i = (Ki jU, j),i, (25)

where Ai ≡ Ai(U), Kv
i j ≡ Kv

i j(U) and Kh
i j ≡ Kh

i j(U) are defined by

Fi,i = Fi,UU,i ≡ AiU,i, Fv
i ≡ Kv

i jU, j, (26)

Fh
i ≡ Kh

i jU, j, Ki j ≡ Kv
i j +Kh

i j. (27)

Neglecting for now the far-field boundary conditions, so that only the solid wall boundary conditions are considered
explicitly, and denoting the solid wall boundary of the domain Ω by ∂ΩW ≡ ∂Ω, the relevant boundary conditions to
be imposed are the

no-slip boundary condition: u = 0, on ∂ΩW ,

adiabatic wall boundary condition: ∇θ ·n = 0, on ∂ΩW .
(28)

Here, θ denotes the absolute temperature. It will be assumed in the subsequent analysis that the POD (or reduced
basis) modes satisfy the no-slip boundary condition (28) in the strong sense.
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B. Entropy Variables for the 3D Compressible Navier-Stokes Equations

The first step to develop a Clausius-Duhem inequality preserving Galerkin projection of the equations (25) is to intro-
duce a change of variables U → V:

U = U(V), (29)

where V are the so-called “entropy variables”. In terms of the entropy variables V, the equations of interest (25) are

A0V,t + ÃiV,i − (K̃i jV, j),i = 0, (30)

where
A0 ≡ U,V, Ãi ≡ AiA0, K̃i j ≡ Ki jA0, (31)

or
A0V,t + F̃i,i(V)− (K̃i jV, j),i = 0, (32)

in conservative form. The entries of the matrices and vectors that appear in (30)–(32) are given in the Appendix. The
Jacobian matrix A0 (31) plays the role of a metric tensor on R

5, and is commonly referred to as the Riemannian metric
if it is non-trivial (A0 6= I5, the 5×5 identity matrix).37, 41

It is well known that the matrices Ai in (25) are non-symmetric. However, it is also well known that all linear
combinations of the Ai possess real eigenvalues and a complete set of eigenvectors, meaning that (25) constitutes a
parabolic-hyperbolic system of conservation laws. The change of variables (29) is sought such that:

1. The matrices A0 and Ãi are symmetric, and

2. The matrix

K̃ ≡






K̃11 K̃12 K̃13
K̃21 K̃22 K̃23
K̃31 K̃32 K̃33




 , (33)

is symmetric positive semi-definite.

If there exists a transformation (29) such that these properties hold, the resulting system in the entropy variables will be
symmetric parabolic if K̃ is positive definite, and incompletely symmetric hyperbolic if K̃ is positive semi-definite.37

Following previously developed symmetrization approaches,5, 12 the change of variables (29) is defined with the help
of so-called generalized entropy functions. A generalized entropy function H ≡ H(U) is by definition a function that
satisfies the following two conditions:12

1. H is convexb.

2. There exist scalar-valued functions σi ≡ σi(U), i = 1,2,3, referred to as entropy fluxes, such that

H,UAi = σi,U. (34)

The following theorems8 delineate the relationship between symmetric parabolic-hyperbolic systems and generalized
entropy functions, and will be employed in the symmetrization of the equations (25).

Theorem B.1. (Mock). A parabolic-hyperbolic system of conservation laws possessing a generalized entropy function
becomes symmetric under the change of variables

VT = H,U. (35)

Theorem B.2. (Godunov). If a parabolic-hyperbolic system can be symmetrized by introducing a change of vari-
ables, then a generalized entropy function and corresponding entropy fluxes exist for this system.

bThe convexity of H is equivalent to the positive-definiteness of A0, since A−1
0 = V,U = H,UU.
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As will be shown in Theorem C.1, appropriate choices for the entropy fluxes and generalized entropy function for the
compressible Navier-Stokes equations (25) are

σi = Hui, H = −ρg(s) ≡−ρs, (36)

respectively.8, 12 Here s is the non-dimensional entropy, s = η/cv, which satisfies the well known Gibbs equation
s = ln(pρ−γ)+ const.

With the choice of affine generalized entropy function (36), the transformation U → V (35) is given by

V =
1
ρı










−U5 +ρı(γ +1− s)

U2
U3
U4
−U1










, (37)

where
s = ln

[
(γ −1)ρı

U γ
1

]

, ρı = U5 −
1

2U1
(U2

2 +U2
3 +U2

4 ). (38)

The inverse mapping V → U is given by

U = ρı











−V5
V2
V3
V4

1− 1
2V5

(V 2
2 +V 2

3 +V 2
4 )











, (39)

where

ρı =

[
γ −1

(−V5)γ

]1/(γ−1)

exp
(

−s
γ −1

)

, s = γ −V1 +
1

2V5
(V 2

2 +V 2
3 +V 2

4 ). (40)

Remark 1: The generalized entropy function (36) is non-unique. There exists5 also a family of generalized entropy
functions H for (30) such that U(V) and F̃(V) are both homogeneous functions of V; that is, these functions satisfy

U,VV = βU, F̃i,VV = β F̃i, (41)

for some β ∈ R. This family is known as Harten’s8 family of generalized entropy functions H = −ρg(s), e.g., the
Harten exponential generalized entropy function

H = Keκs = K(pρ−γ), K,κ 6= 0. (42)

The generalized entropy function (42) – unlike the generalized entropy function (36) – is such that (41) holds. It can
be shown that if the heat flux term Fh

i,i is present in the equations (22), the only way for the augmented heat flux matrix
(33) to remain positive semi-definite is if H is affine in s, i.e., if H has the form (36). It is for this reason that the
generalized entropy function (36) is selected for the compressible Navier-Stokes equations (22), instead of (42). The
latter could be used for the Euler equations or the Navier-Stokes equations with Fh

i,i ≡ 0. In the case considered here,
since Fh

i,i 6= 0, the entropy stability result in Theorem C.1 can only be obtained with the choice of affine generalized
entropy function (36).

A consequence of the fact that the selected generalized entropy function does not yield the first identity in (41) is that
the matrix A0 6= I5 (31), making it a non-trivial Riemmanian metric. It follows that there will arise a mass matrix in
the discrete ROM system to be solved for the modal amplitudes or ROM coefficients (89).
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C. Entropy Stable Galerkin Projection and Weak Implementation for the Compressible Navier-Stokes Equa-
tions

The stability – namely the ab initio satisfaction of the Clausius–Duhem inequality – of the Galerkin projection of the
symmetrized compressible Navier-Stokes equations (30) with boundary conditions (28) is now examined.

Assume the entropy variables have been expanded in a vector basis {φφφ i}
M
i=1 ∈ R

5:

V(x, t) ≈ VM(x, t) =
M

∑
m=1

am(t)φφφ m(x), (43)

where the am(t) are the modal amplitudes (or ROM coefficients) to be solved for, and that the basis {φφφ i}
M
i=1 is or-

thonormal in the L2(Ω) inner product, so that (φφφ i,φφφ j) = δi j for all i, j = 1, ...,M.

Introducing the shorthand, for V1,V2 ∈ R
5,

(V1,V2) ≡
∫

Ω
VT

1 V2dΩ, 〈V1,V2〉∂ΩW
≡

∫

∂ΩW

VT
1 V2dS, (44)

the governing equations (30) in the entropy variables projected onto a reduced basis mode φφφ m, for m = 1, ...,M, are

(φφφ m,A0V,t)+
(
φφφ m, ÃiVi

)
−
(
φφφ m, [K̃ν

i jV, j],i
)
−
(

φφφ m, [K̃h
i jV, j],i

)

= 0. (45)

Remark 2: From this point forward, the non-conservative form of the equations (30) will be employed, following the
general approach of Hughes et. al12, 37, 38, 38–41 and Bova et. al.42 In applications in which the global conservation of
the advective flux is important, the second convective term in (45) should be written in “conservation form”, namely

(
φφφ m, ÃiVi

)
=
(
φφφ m, F̃i,i(V)

)
= −

(
φφφ m,i, F̃i(V)

)
+ 〈φφφ m, F̃i(V)ni〉∂ΩW

. (46)

Although the model reduction approach developed herein is illustrated specifically on the non-conservative form of
the equations (30), the extension of the formulation to the conservative equations (32) is straightforward, so there is
no loss of generality in working with (30).

1. Weak Implementation of Boundary Conditions

In the continuous Galerkin model reduction approach, an implementation of the boundary conditions in the ROM is
required. This is due to the fact that, unlike in the discrete model reduction approach, the boundary conditions present
in the discretized equation set are not inherited automatically by the ROM solution. Boundary conditions are typically
enforced through a weak implementation, that is, by applying them directly into the boundary integrals that arise when
the governing equations are projected onto a mode, and the diffusive terms are integrated by parts.

To this effect, integration by parts of the third and fourth terms in (45) yields

(φφφ m,A0V,t) = −
(
φφφ m, ÃiVi

)
−
(
φφφ m,i,K̃i jV, j

)
+

∫

∂ΩW

φφφ T
m[K̃v

i jniV, j]
no-slipdS

︸ ︷︷ ︸

=Ino slip
m

+
∫

∂ΩW

φφφ T
m[K̃h

i jniV, j]
adiabaticdS

︸ ︷︷ ︸

=Iadiabatic
m

, (47)

for m = 1, ...M. Next, the no-slip and adiabatic wall boundary conditions (28) are inserted into the boundary integrals
that arise, denoted Ino-slip

m and Iadiabatic
m respectively. To clarify the notation, [Kν

i jniV j]
no-slip denotes the term Kν

i jniV j

following the substitution of the no-slip boundary condition (28), and similarly for [Kν
i jniV j]

adiabatic and the adiabatic
wall boundary condition. Some algebraic manipulations involving the matrices given in the Appendix reveal that

[K̃ν
i jniV, j]

no-slip =
µ

V 2
5










0
(−V5Vi+1,1 +Vi+1V5,1 −V5V2,i +V2V5,i)ni

(−V5Vi+1,2 +Vi+1V5,2 −V5V3,i +V3V5,i)ni

(−V5Vi+1,3 +Vi+1V5,3 −V5V4,i +V4V5,i)ni

0










+λ
[
−V5Vi+1,i +Vi+1V5,i

V 2
5

]










0
n1
n2
n3
0










, (48)
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and
[K̃h

i jniV, j]
adiabatic = 0. (49)

Assuming that the modes φφφ i satisfy the no-slip condition (28) in the strong sense (φ 2
i = φ 3

i = φ 4
i = 0 for i = 1, ...,M,

where φ j
i denotes the jth component of φφφ i), it is straightforward to see from (48) that

Ino-slip
m = 0, (50)

for all m (since φφφ T
m[K̃ν

i jniV, j]
no-slip = 0). Similarly, from (49),

Iadiabatic
m = 0, (51)

for all m. Hence, the weak form of the problem with a weak implementation of the relevant boundary conditions (28)
is simply

(φφφ m,A0V,t) = −
(
φφφ m, ÃiVi

)
−
(
φφφ m,i,K̃i jV, j

)
. (52)

2. Entropy Stability of the Galerkin-Projected Compressible Navier-Stokes Equations with Boundary Conditions

The Galerkin projection is termed “entropy stable” if it satisfies the Clausius-Duhem entropy inequality (21), a state-
ment of the second law of thermodynamics. It is shown in Theorem C.1 that the change of variables (37) is such that
when the transformed equations (30) are projected onto a reduced basis mode and the boundary conditions (28) are
applied through a weak formulation, the Clausius-Duhem inequality is respected ab initio for all numerical solutions.

Theorem C.1. Consider the symmetrized compressible 3D Navier-Stokes equations (30) in an open bounded domain
Ω⊂R

3, with the no-slip and adiabatic wall boundary condition (28) on the boundary ∂ΩW . Define the transformation
U→V given by (35) with the affine generalized entropy function (36), so that the relationship between the conservation
variables U and the entropy variables V is (37). Assume the modes φφφ j satisfy the no-slip condition on ∂ΩW . Then
the Galerkin projection of (30) with boundary conditions (28) in the L2(Ω) inner product is “entropy stable”, with
entropy estimate

d
dt

∫

Ω
ρηdΩ ≥ 0. (53)

Proof. Premultiplying (30) by VT and integrating over Ω gives
∫

Ω
VT A0V,tdΩ+

∫

Ω
VT ÃiV,idΩ−

∫

Ω
VT (K̃i jV, j),idΩ = 0. (54)

Expanding the first term in (54),
∫

Ω
VT A0V,tdΩ =

∫

Ω
H,UU,VV,tdΩ =

∫

Ω
H,UU,tdΩ =

∫

Ω
H,tdΩ. (55)

Note that
VT Ãi = (H,UAi)A0 = σi,UU,V = σi,V, (56)

so that the convection term in (54) becomes
∫

Ω
VT ÃiV,idΩ =

∫

Ω
σi,VV,i
︸ ︷︷ ︸

σi,i

dΩ =
∫

Ω
(Hui),idΩ. (57)

Now, the diffusive term in (54) simplifies as follows:
∫

Ω VT (K̃i jV, j),idΩ = −
∫

Ω VT
,i K̃i jV, jdΩ+

∫

∂ΩW
VT K̃i jniV, jdS

= −
∫

Ω VT
,i K̃i jV, jdΩ+

∫

∂ΩW
VT Ki jniA0V, jdS

= −
∫

Ω VT
,i K̃i jV, jdΩ+

∫

∂ΩW
VT (Kν

i j +Kh
i j)niU,VV, jdS

= −
∫

Ω VT
,i K̃i jV, jdΩ+

∫

∂ΩW
VT (Kν

i j +Kh
i j)niU, jdS

= −
∫

Ω VT
,i K̃i jV, jdΩ+

∫

∂ΩW
VT (Fν

i +Fh
i )nidS

= −
∫

Ω VT
,i K̃i jV, jdΩ+

∫

∂ΩW
VT Fν

i nidS + 1
cv

∫

∂ΩW

qini
θ dS.

(58)
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Some algebraic manipulations of the K̃i j matrices given in the Appendix reveal that the expression for [Fν
i ni]

no-slip is
(48), where [Fν

i ni]
no-slip denotes the term Fν

i ni following the substitution of the no-slip boundary condition (28). Let
φφφ j ∈ R

5 be a reduced basis mode for the unknown field in the entropy variables approximated as a linear combination
of the reduced basis modes, that is by V(x, t) ≈ ∑M

m=1 am(t)φφφ m(x), and assume that φφφ j satisfies the no-slip condition.
Then, it follows from (48) that [φφφ T

j Fν
i ni]

no-slip = 0 necessarily for all j, meaning [VT Fν
i ni]

no-slip = 0.

Combining (55), (57) and (58) gives the following bound

1
cv

∫

Ω(ρη),tdΩ =
∫

Ω VT
,i K̃i jV, jdΩ+

∫

Ω

[

−(Hui),i −
1
cv

( qi
θ
)

,i

]

dΩ

=
∫

Ω VT
,i K̃i jV, jdΩ+

∫

∂ΩW







−H uini

︸︷︷︸

=0 (by no-slip BC)

−
1
cv

(qi

θ

)

ni

︸ ︷︷ ︸

=0 (by adiabatic wall BC)








dS

=
∫

Ω ∇VT K̃∇VdΩ
≥ 0,

(59)

by the positive semi-definiteness of the matrix K̃ (33), where ∇VT ≡
(

V,1, V,2, V,3

)

. Hence,

d
dt

∫

Ω
ρηdΩ ≥ 0, (60)

which implies non-decreasing entropy (21), and therefore entropy stability of the Galerkin projection.

The practical consequence of Theorem C.1 is that the numerical solution always satisfies the Clausius-Duhem inequal-
ity for any choice of reduced basis. The continuous representation of the reduced basis is what enables the proof of
this result.

3. Stabilization and Shock-Capturing

It is well known12 that the standard Galerkin method can be ineffective when applied to flows that contain sharp
boundary layers, internal layers and/or shocks: typically the computed solution exhibits spurious localized oscillations
in the vicinity of a layer or a shock. To remedy this difficulty, a common approach taken by the finite element
community12, 37–42 is to add to the right hand side of the weak form (54) a weighted residual term of the form

(
A0V,t − ÃiV,i +(K̃i jV, j),i,ΓΓΓ(A0V,t − ÃiV,i +(K̃i jV, j),i)

)
, (61)

where ΓΓΓ is a positive-definite matrix of stabilization and/or discontinuity-capturing parameters whose entries are spec-
ified to suppress spurious oscillations in the presense of sharp layers and/or shocks.39 Although the development of
these terms is beyond the scope of the present work, it is noted that the result of Theorem C.1 still holds if stabilization
terms resembling (61) are added to the equation (52), since

(
A0V,t − ÃiV,i +(K̃i jV, j),i,ΓΓΓ(A0V,t − ÃiV,i +(K̃i jV, j),i)

)
≥ 0, (62)

provided ΓΓΓ is positive definite.

D. Interpolation and Discretization

Having established a priori the entropy stability of the weak formulation following the Galerkin projection and bound-
ary condition application steps of the proposed model reduction procedure (52), the next step is to discretize this weak
form.

Substituting the modal expansion (43) into (52), gives, for m = 1, ...,M,

M

∑
n=1

(φφφ m, [A0]Mφφφ n) ȧn = −
(
φφφ m, [Ãi]MVM,i

)
− (φφφ m,i, [K̃i j]MVM, j), (63)
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where [A0]M ≡ A0(VM) = A0
(

∑M
n=1 an(t)φφφ n(x)

)
and similarly for the other matrices with “M” subscripts in (63).

All the terms in the projected equations (63) contain non-linearities, including the term on the left hand side. These
non-linear terms will be denoted as follows:

[f0(VM)]n = [A0]Mφφφ n, n = 1, ...,M, (64)

f1(VM) ≡ [Ãi]MVM,i, (65)

and
fi+1(VM) ≡ [K̃i j]MVM, j, i = 1,2,3, (66)

where

fi(VM) ≡ fi

(
M

∑
m=1

am(t)φφφ m(x)

)

, i = 0, ...,4. (67)

In this notation, (63) has the form

M

∑
n=1

(φφφ m, [f0(VM)]n) ȧn = −(φφφ m, f1(VM))−
3

∑
i=1

(φφφ m,i, fi+1(VM)), (68)

for m = 1, ...,M. Once discretized in time, (68) will yield a non-linear discrete system of equations to be advanced
in time (given an initial condition V(0,x) = V0(x)) using an explicit time integration scheme, or an implicit scheme
combined with Newton’s method at each time step. Note that the left hand side of (68) will give rise to a mass matrix
that would need to be factorized during the time-integration of the ROM. This is a consequence of the fact the fact that
the chosen affine generalized entropy function (36) is such that U(V) is not homogeneous in V (Remark 1).

1. Semi-Discrete ROM System Following Interpolation

The functions fi (64)–(66) are highly non-linear in the entries of V. Thus, direct treatment of the terms involving inner
products with these functions would invalidate the term reduced order model: these inner products would need to be
re-computed in each time (or Newton) step, which would have a cost depending on N, the (typically large) number of
spatial discretization points. To recover efficiency, the coefficient function approximation to the non-linear terms in
this expression described in Section III is applied to the system (68).

Per the discussion in Section III, the first step is to compute K snapshots of the entropy variable field V from a
high-fidelity solution, at K different times tk:

S
V ≡ {ξξξ V

k (x) = Vk
h(x) : 1 ≤ k ≤ K}. (69)

Given this set of snapshots of the flow field, snapshots for each of the non-linear functions in (64) – (66) are computed:

S
[f0]n ≡ {ξξξ [f0]n

k (x) = [f0(Vk
h(x))]n : 1 ≤ k ≤ K}, n = 1, ...,M, (70)

S
f j ≡ {ξξξ f j

k (x) = f j(Vk
h(x)) : 1 ≤ k ≤ K}, j = 1, ...,4. (71)

The “best” (or any) interpolation points for each of the non-linear functions (64)–(66) will be denoted by
{

x[f0]n
m

}M

m=1
: “best” (or any) interpolation points for [f0]n,n = 1, ...,M, (72)

{

x
f j
m

}M

m=1
: “best” (or any) interpolation points for f j, j = 1, ...,4. (73)

The main difference between the non-linear functions that appear in the projected Navier-Stokes equations (68) and
the model problem considered in Section III is that the non-linear functions in the former are vector-valued. However,
in practice, this poses no difficulty for the solution procedure of Section III: this exact procedure can be applied to
each component of each of the non-linear vector-valued function in (64)–(66). For concreteness, and without loss of
generality, let f j ∈ R

5 be any of the vector-valued functions in (64)–(66), and let f i
j denote the ith component of f j for

j = 0...,4, i = 1, ...,5. Then, each of the components of each of the functions f j can be expanded in an orthonormal
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(scalar) basis as, denoted here by
{

φ
f i

j
m

}M

m=1
. The best approximations of the elements in the snapshot set are defined

as

[ f i
j]
∗
M(Vk

h) =
M

∑
m=1

α
f i

j
m φ

f i
j

m (x), 1 ≤ k ≤ K, (74)

where
α

f i
j

m = (φm, f i
j(V

k
h(·))), m = 1, ...,M,1 ≤ k ≤ K, (75)

for i = 1, ...,5, j = 0, ...,4. Now, the interpolation points for each component of each non-linear function
{

x
f i

j
m

}M

m=1
∈

Ω ⊂ R
3 are defined as the solution to the following optimization problem:

minx1,...,xM∈Ω

∣
∣
∣
∣

∣
∣
∣
∣
[ f i

j]
∗
M(·)−∑M

m=1 β
f i

j
m (x1, ...,xM)φ

f i
j

m

∣
∣
∣
∣

∣
∣
∣
∣

2

∑M
n=1 φ

f i
j

n (xm)β
f i

j
n (x1, ...,xM) = f i

j(xm), 1 ≤ m ≤ M,

(76)

so that the set of points
{

x
f i

j
m

}M

m=1
is determined to minimize the average error between the interpolants [ f i

j]M(·) and

the best approximations [ f i
j]
∗
M(·). Substituting (74) into (76) and invoking the orthonormality of the

{

φ
f i

j
m

}M

m=1
, gives

minx1,...,xM∈Ω ∑M
m=1

(

α
f i

j
m −β

f i
j

m (x1, ...,xM)

)2

∑M
n=1 φ

f i
j

n (xm)β
f i

j
n (x1, ...,xM) = f i

j(xm), 1 ≤ m ≤ M.

(77)

Comparing the optimization problems (77) and (13), the reader may observe that they are identical, with the general
function f in (13) replaced by f i

j, the ith component of f j, one of the non-linear functions in (64)–(66). Hence, the
“best points” algorithm outlined in Section III can be applied to each of these components.

Given a set of interpolation points x
f i

j
m for f i

j, the cardinal functions ψ
f i

j
m for f i

j are defined by

φφφ
f i

j
M(x) = A f i

j ψψψ
f i

j
M(x), (78)

where φφφ
f i

j
M(x) =

(

φ
f i

j
1 (x), ...,φ

f i
j

M (x)

)T

and ψψψ
f i

j
M(x) =

(

ψ
f i

j
1 (x), ...,ψ

f i
j

M (x)

)T

, and A
f i

j
mn = φ

f i
j

n

(

x
f i

j
m

)

, for m,n = 1, ...,M.

As before, the (scalar) cardinal functions ψ
f i

j
m satisfy ψ

f i
j

m

(

x
f i

j
n

)

= δmn. Given the interpolation points
{

x
f i

j
m

}M

m=1
and

cardinal functions
{

ψ
f i

j
m

}M

m=1
(78), the ith component (i = 1, ...,5) of f j (64) – (66) is approximated by

[ f i
0(V)]n ≈ [[ f i

0]M(V)]n =
M

∑
m=1

[ f i
0]n

(

V
(

x
[ f i

0]n
m

))

ψ [ f i
0]n

m ∈ R, i = 1, ...,5,n = 1, ...,M, (79)

f i
j(V) ≈ [ f i

j]M(V) =
M

∑
m=1

f i
j

(

V
(

x
f i

j
m

))

ψ
f i

j
m ∈ R, i = 1, ..,5, j = 1, ...,4. (80)

As shown in Section III for a scalar-valued non-linear function f , the projection of each of the f j onto the mth reduced
basis mode φφφ m can be written as a matrix-vector product. Consider first specifically f1 (65). Letting φ i

m denote the ith
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component of φφφ m for i = 1, ...,5,

(φφφ m, [f1]M(V)) = ∑5
i=1
(
φ i

m, [ f i
1]M(V)

)

= ∑5
i=1

(

φ i
m,∑M

l=1 f i
1

(

∑M
n=1 an(t)φφφ n

(

x
f i
1

l

))

ψ f i
1

l

)

= ∑5
i=1

∫

Ω φ i
m

[

∑M
l=1

{

f i
1

(

∑M
n=1 an(t)φφφ n

(

x
f i
1

l

))}

ψ f i
1

l

]

dΩ

= ∑M
l=1

[∫

Ω

(

φ 1
mψ f 1

1
l ,φ 2

mψ f 2
1

l ,φ 3
mψ f 3

1
l ,φ 4

mψ f 4
1

l ,φ 5
mψ f 5

1
l

)

dΩ
]

︸ ︷︷ ︸

∈R1×5

f1

(
M

∑
n=1

an(t)φφφ n(x
f1
m)

)

︸ ︷︷ ︸

∈R5×1

,

(81)

where

f1

(
N

∑
n=1

an(t)φφφ n(x
f1
m)

)

≡



















f 1
j

(

∑m
n=1 an(t)φφφ n(x

f 1
1

m )

)

f 2
1

(

∑M
n=1 an(t)φφφ n(x

f 2
1

m )

)

f 3
1

(

∑M
n=1 an(t)φφφ n(x

f 3
1

m )

)

f 4
1

(

∑M
n=1 an(t)φφφ n(x

f 4
1

m )

)

f 5
1

(

∑m
n=1 an(t)φφφ n(x

f 5
1

m )

)



















∈ R
5, (82)

(and similarly for f j, j = 0,2, ...,4). (81) is a matrix-vector product of the form Gf1f1(Df1aM) where for l,m = 1, ...,M,

Gf1
l,[5(m−1)+1:5m]

=
∫

Ω
(φ 1

l ψ f 1
1

m ,φ 2
l ψ f 2

1
m ,φ 3

l ψ f 3
1

m ,φ 4
l ψ f 4

1
m ,φ 5

l ψ f 5
1

m )dΩ ∈ R
1×5, (83)

By analogy,
Gfi+1

l,[5(m−1)+1:5m]
=

∫

Ω
(φ 1

l,iψ
f 1
i+1

m ,φ 2
l,iψ

f 2
i+1

m ,φ 3
l,iψ

f 3
i+1

m ,φ 4
l,iψ

f 4
i+1

m ,φ 5
l,iψ

f 5
i+1

m )dΩ ∈ R
1×5, (84)

for i = 1,2,3. The size of the matrices Gfi (83) and (84) are M×5M. The matrix Df j is defined by

Df j ≡








φφφ 1

(

x
f j
1

)

. . . φφφ M

(

x
f j
1

)

...
. . .

...
φφφ 1

(

x
f j
M

)

. . . φφφ M

(

x
f j
M

)








∈ R
5M×M, (85)

for j = 1, ...,4, with

φφφ m

(

x
f j
n

)

≡



















φ 1
m

(

x
f 1

j
n

)

φ 2
m

(

x
f 2

j
n

)

φ 3
m

(

x
f 3

j
n

)

φ 4
m

(

x
f 4

j
n

)

φ 5
m

(

x
f 5

j
n

)



















∈ R
5, 1 ≤ m,n ≤ M. (86)
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Similarly, turning one’s attention to the left hand side of (68):

∑M
k=1(φφφ l , [f0(V)]k)ȧk = ∑5

i=1 ∑M
k=1
(
φ i

l , [ f i
0(V)]k

)
ȧk

= ∑5
i=1 ∑M

k=1

(

φ i
l ,∑

M
m=1

[

f i
0

(

∑M
n=1 an(t)φφφ n

(

x
[ f i

0]k
m

))]

k
ψ [ f i

0]k
m

)

ȧk

= ∑5
i=1 ∑M

k=1 ȧk
∫

Ω φ i
l

{

∑M
m=1

[

f i
0

(

∑M
n=1 an(t)φφφ n

(

x
[ f i

0]k
m

))]

k
ψ [ f i

0]k
m

}

dΩ

= ∑M
k=1







∑M
m=1

[∫

Ω
(φ 1

l ψ [ f 1
0 ]k

m ,φ 2
l ψ [ f 2

0 ]k
m ,φ 3

l ψ [ f 3
0 ]k

m ,φ 4
l ψ [ f 4

0 ]k
m ,φ 5

l ψ [ f 5
0 ]k

m )dΩ
]

︸ ︷︷ ︸

∈R1×5

·

[

f0

(
M

∑
n=1

an(t)φφφ n(x
[f0]k
m )

)]

k
︸ ︷︷ ︸

∈R5×1







ȧk.

(87)

It follows from (87) that the columns of the mass matrix are given by

M[1:M],k = G[f0]k [f0]k

(

D[f0]k aM

)

∈ R
M, (88)

for k = 1, ...,M, where G[f0]k and D[f0]k are defined analogously to (83) and (85) respectively.

It follows that, with interpolation the semi-discrete ROM ODE system for the compressible Navier-Stokes equations
is not (63), but rather

MȧM +
4

∑
i=1

Gfifi(DfiaM) = 0. (89)

2. Implementation

Once it is constructed, (89) is advanced forward in time using a time-integration scheme, or a time-integration scheme
and Newton’s method, if the selected time-integration scheme is implicit. The following remarks regarding the imple-
mentation of the model reduction procedure developed above are noteworthy.

• In the ROM ODE system with interpolation (89), all the inner-products are contained in the Gf j matrices (83),
which can be pre-computed prior to time integration of the ROM ODE system (89). Similarly, the interpolated
mass matrix (88) can also be pre-computed prior to the time-integration of the ROM system.

• With interpolation, the re-computation of inner products involving the non-linear functions and the reduced basis
modes at each time step is replaced by the evaluation of the non-linear functions (82) at a set of M pre-selected
interpolation points. In general, M << N, where N is the number of spatial discretization points.

• In a numerical implementation, for the sake of computing the required continuous L2 inner products involving
the POD modes and their derivatives, the reduced basis (e.g., a POD basis) are described by a finite element rep-
resentation of the computational mesh. The required inner products are then computed using a Gauss quadrature
rule.1–3, 13 This approach is fairly general, as long as the simulation code can output data to a nodal mesh and
the mesh can be cast as a collection of finite elements.

• The “best” interpolation points appearing in (86) are computed in the offline stage of the model reduction proce-
dure, for each of the components of the non-linear functions that appear in (83). For a detailed discussion of the
computational complexity of the “best points” interpolation algorithm, the reader is referred to Peraire, Nguyen
et al.16, 17 Although the offline construction of the proposed reduced order model is computationally intensive,
this computation is performed only once, and would not inhibit any online real-time predictive computations
that the model may be needed for.16, 17

• The time-integration of the ROM ODE system (89) requires the factorization of the matrix M, an M×M dense
matrix. However, since the number of modes M will in general be quite small, this matrix will be quite small.
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VI. Preliminary Numerical Studies: Scalar Conservation Laws

This section presents some preliminary results for the model reduction procedure proposed above. The procedure is
applied to some non-linear scalar conservation laws of the form

u,t +[ f (u)],x = µu,xx, (90)

where f (u) is the flux function. (90) is a simpler scalar non-linear model for the Navier-Stokes equations (22).
The degree of non-linearity in (90) depends on the flux function f (u). The primary objective of these preliminary
numerical studies is to gauge the viability of the Proper Orthogonal Decomposition (POD)/Galerkin method for model
reduction outlined above, both without as well as with interpolation, when applied to non-linear conservation laws
whose solution possess inherently non-linear features in common with features of solutions to the compressible Navier-
Stokes equations (22), such as shocks and rarefactions.

A. Entropy Stability and Scalar Conservation Laws

Before proceeding to the numerical studies, some discussion of entropy stability in the context of conservation laws
of the form (90) is in order, so as to connect the present section to the first part of this paper. It is well known that
the differential equation (90) is not valid in the classical sense for solutions containing shocks (discontinuities). This
motivates one to seek so-called weak solutions to these equations. In general, weak solutions to (90) are non-unique.
In developing a numerical method for (90) it is crucial that the selected method computes a weak solution to this law
that is physically correct, or “admissible”. As for the Navier-Stokes equations, “admissibility conditions” are closely
tied to the concept of entropy – indeed, they are often referred to as “entropy conditions”. These conditions demand
that the entropy across a shock should increase. Mathematically, this requirement results in a range of admissible
speeds at which the discontinuity or shock is allowed to propagate (the well known Rankine-Hugoniot and Oleinik
entropy conditions, for convex and non-convex flux functions f (u) respectively).

For scalar conservation laws of the form (90) such as the two examples considered here, it can be shown34, 35 that

H =
1
2u2, (91)

defines a valid generalized entropy function. It follows that v = u (35), that is, no transformation is required to ensure
a priori entropy stability of the Galerkin projection step of the model reduction procedure.

Remark 3: Note that the generalized entropy function is such that the transformation (35) is non-trivial for systems of
conservation laws of the form:

u,t +∇f(u) = 0, (92)
such as, for example, the shallow water equations and the equations of gas dynamics.5, 8, 12, 34, 42 Although the examples
below are for scalar equations, the extension to non-linear systems is straightforward.36

For both test problems considered in this section, the reduced basis employed was a POD basis, obtained in the usual
L2 inner product from snapshots of “high-fidelity” solutions computed using a third order ENO-LLF method34 in space
and fourth order Runge-Kutta method in time.

B. Burgers’ Equation

Consider the following initial boundary value problem (IBVP) for Burgers’ equation, a scalar conservation law of the
form (90) with quadratic flux function f (u) = 1

2 u2.

ut +
(

u2
2

)

x
= µuxx, −1 < x < 3, 0 < t < T,

u(−1, t) = u(3, t) = 0, 0 < t < T,
(93)

with initial condition

u(x,0) =







0, x < 0,

1, 0 ≤ x < 1,

0, x ≥ 1.

(94)
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Discontinuous initial data (94) are specified such that both a rarefaction and a shock form in the µ → 0 limit. A total
of K = 101 snapshots of this solution were taken, at increments ∆tsnap = 0.03, up to time T = 3, computed with spatial
mesh increment ∆x = 0.008.
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Figure 1. POD modes and interpolation points for the Burgers’ IBVP (93)

The POD modes for this problem are shown in Figure 1 (a). The reader may remark that higher order modes are
oscillatory in nature. The reader may also observe that the POD modes are not C1(Ω). This is not surprising, as the
snapshots from which the POD modes were computed were not even C0(Ω). In the discrete implementation of the
ROM, care must be taken to ensure that the derivatives that appear in the weak form of the problem are well-defined
locally for the purpose of evaluating the required inner products.

The interpolation points computed via the BPIM method of Peraire, Nguyen et al.16, 17 and outlined in Section III are
shown in Figure 1 (b). The spacing of the points is reasonable given the character of the exact solution to this problem
(Figure 2).

Figures 2–3 show the computed ROM solution using a POD basis with M = 30 modes without and with the “best
points” interpolation respectively. The ROMs are able to capture the essential features of the solution, namely the
weak shock and rarefaction. Minor oscillations are apparent in the vicinity of the weak shock. This suggests that
the addition of some artificial viscosity may be required4, 18 when µ is small to capture accurately the shock (Section
III.C.3).

C. Buckley-Leverett Equation

The other conservation law considered is the so-called Buckley-Leverett equation, which has a highly non-linear,
non-convex flux f (u) = u2

u2+(1−u)2 :

ut +
(

u2

u2+(1−u)2

)

x
= µuxx, −1.5 < x < 1.5, 0 < t < T,

u(−1.5, t) = u(1.5, t) = 0, 0 < t < T,

u(x,0) = e−16x2
, −1.5 < x < 1.5.

(95)

The equation is sometimes used to model two-phase flow in porous media. A 2D variant of this problem has been
considered by other authors in the context of model order reduction.16, 17 To build the POD basis, K = 50 snapshots
were taken from the high-fidelity, with temporal spacing ∆tsnap = 0.0102, and a spatial mesh increment ∆x = 0.0151.

Figure 4 (a) shows the first four and the last POD mode for this problem. The initial condition for this problem is
C∞(Ω) and the solutions possesses only a weak shock, so the POD modes are more smooth than the POD modes for
the problem in Section VI.B (Figure 1 (a)). As for the problem in Section VI.B, higher order modes are oscillatory in
nature.

The “best points” are shown in Figure 4 (b). Given the strong non-linearity in the flux f (u), the BPIM greatly improves
complexity for this problem.
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Figure 2. POD ROM solution to the Burgers’ IBVP (93) with M = 30 (no interpolation)

Results for POD ROMs with M = 10 modes without and with interpolation respectively are shown in Figures 5–6
respectively. The ROMs perform equally well: the ROM solution with interpolation (Figure 5) is indistinguishable
from the ROM solution without interpolation (Figure 6).

VII. Conclusions and Future Work

This paper presents techniques for building entropy stable and efficient reduced order models (ROMs) governed by
non-linear partial differential equations (PDEs) in fluid mechanics, namely the full compressible Navier-Stokes equa-
tions. In effect, the techniques are a natural extension of the stability-preserving model reduction methodology de-
veloped in earlier work1–3, 13 specifically for the linearized compressible flow equations. The non-linearity present
in the full compressible flow equations presents a challenge for developing provably stable and efficient ROMs. The
challenge of stability is addressed with the help of a transformation that effectively symmetrizes these equations. It
is proven that the Galerkin projection of the equations gives rise to a discrete model that obeys an essential property
of the governing equations, namely the second law of thermodynamics, or Clausius-Duhem inequality. The practical
implication of this result is that if the ROM is built in the so-called “entropy variables”, entropy stability is guar-
anteed a priori for any choice of reduced basis. It is shown that the online computational complexity of the ROM
can be reduced by handling the non-linearities present in the governing equations efficiently using the “best points”
interpolation method.16, 17 Preliminary numerical tests on some scalar conservation laws whose solutions possess fea-
tures akin to the solutions of the compressible Navier-Stokes equations suggest that the model reduction procedure
with a proper orthogonal decomposition (POD) basis and the “best points” interpolation can capture accurately and
efficiently non-linear phenomena such as rarefactions and shocks. These tests also reinforce the conjecture that the
addition of stabilization and/or shock-capturing terms to the variational formulation may be required in the presense
of sharp layers and/or strong shocks.

Future work will involve implementing the reduced order model formulated in the present work and evaluating its
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Figure 3. POD ROM solution to the Burgers’ IBVP (93) with M = 30 (with the “best points” interpolation)
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Figure 4. POD modes and interpolation points for the Buckley-Leverett IBVP (95)

performance on benchmark problems of relevance in the field of aeronautics. Since the theoretical results established
in this paper are basis-independent, the use of alternate bases (e.g., balanced POD) to represent the solution will be
examined. Robustness with respect to parameter changes will be explored using recent developments in the area of
reduced basis interpolation.32 Techniques for incorporation of turbulence models, as well as stabilization and shock
capturing operators, into the ROM formulation will be derived.
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Figure 5. POD ROM solution to Buckley-Leverett IBVP (95) with M = 10 (no interpolation)

Appendix: Compressible Navier-Stokes System Matrices and Vectors in the Entropy
Variables

To simplify the notation, the following variables are introducedc:

γ̄ = γ −1, k1 = 1
2V5

(V 2
2 +V 2

3 +V 2
4 ), k2 = k1 − γ ,

k3 = k2
1 −2γk1 + γ , k4 = k2 − γ̄, k5 = k2

2 − γ̄(k1 + k2),

c1 = γ̄V5 −V 2
2 , d1 = −V2V3, e1 = V2V5,

c2 = γ̄V5 −V 2
3 , d2 = −V2V4, e2 = V3V5,

c3 = γ̄V5 −V 2
4 , d3 = −V3V4, e3 = V4V5.

(96)

In the entropy variables V, the Euler fluxes F̃i(V) are given by:

F̃1(V) =
ρı
V5










e1
c1
d1
d2

k2V2










, F̃2(V) =
ρı
V5










e2
d1
c2
d3

k2V3










, F̃3(V) =
ρı
V5










e3
d2
d3
c3

k2V4










. (97)

cThis section is repeated here from the Appendix of Hughes et al.12 to make this document self-contained.
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Figure 6. POD ROM solution to Buckley-Leverett IBVP (95) with M = 10 (with the “best points” interpolation)

The symmetrizing matrix A0 and its inverse are given by

A0 = U,V =
ρı

γ̄V5










−V 2
5 e1 e2 e3 V5(1− k1)

c1 d1 d2 V2k2
c2 d3 V3k2

c3 V4k2
symm. −k3










, (98)

and

A−1
0 = V,U = −

1
ρıV5










k2
1 + γ k1V2 k1V3 k1V4 (k1 +1)V5

V 2
2 −V5 −d1 −d2 e1

V 2
3 −V5 −d3 e2

V 2
4 −V5 e3

symm. V 2
5










. (99)

Here,

ρı =

[
γ −1

(−V5)γ

]1/(γ−1)

exp
(

−s
γ −1

)

. (100)

The Jacobians of the Euler fluxes are:

Ã1 = F1,V =
ρı

γ̄V 2
5










e1V5 c1V5 d1V5 d2V5 k2e1
−(c1 +2γ̄V5)V2 −c1V3 −c1V4 c1k2 + γ̄V 2

2
−c2V2 −d1V4 k4d1

−c3V2 k4d2
symm. k5V2










, (101)
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Ã2 = F2,V =
ρı

γ̄V 2
5










e2V5 d1V5 c2V5 d3V5 k2e2
−c1V3 −c2V2 −d1V4 k4d1

−(c2 +2γ̄V5)V3 −c2V4 c2k2 + γ̄V 2
3

−c3V3 k4d3
symm. k5V3










, (102)

Ã3 = F3,V =
ρı

γ̄V 2
5










e3V5 d2V57d3V5 c3V5 k2e3
−c1V4 −d2V3 −c3V2 k4d2

−c2V4 −c3V3 k4d3
−(c3 +2γ̄V5)V4 c3k2 + γ̄V 2

4
symm. k5V4










. (103)

The velocity and temperature can be written in the entropy variables as:

ui(V) = −
Vi+1
V5

, i = 1,2,3, (104)

θ(V) = −
1

cvV5
, (105)

The gradients of the viscous and heat fluxes are given by:

ui, j =
−V5Vi+1, j +Vi+1V5, j

V 2
5

, (106)

κθ,i =
γµ
Pr

1
V 2

5
V5,i, (107)

where Pr ≡ µcp/κ is the Prandtl number.

Finally, the symmetrized viscous and heat flux matrices K̃i j ≡ K̃v
i j + K̃h

i j are given by:

K̃11 =
1

V 3
5











0 0 0 0 0
0 −(γ −2µ)V 2

5 0 0 (λ +2µ)e1
0 0 −µV 2

5 0 µe2
0 0 0 −µV 2

5 µe3

0 (λ +2µ)e1 µe2 µe3 −
[

(λ +2µ)V 2
2 + µ(V 2

3 +V 2
4 )− γµV5

Pr

]











, (108)

K̃12 =
1

V 3
5










0 0 0 0 0
0 0 −λV 2

5 0 λe2
0 −µV 2

5 0 0 µe1
0 0 0 0 0
0 µe2 λe1 0 (λ + µ)d1










, (109)

K̃13 =
1

V 3
5










0 0 0 0 0
0 0 0 −λV 2

5 λe3
0 0 0 0 0
0 −µV 2

5 0 0 µe1
0 µe3 0 λe1 (λ + µ)d2










, (110)

K̃22 =
1

V 3
5











0 0 0 0 0
0 −µV 2

5 0 0 µe1
0 0 −(λ +2µ)V 2

5 0 (λ +2µ)e2
0 0 0 −µV 2

5 µe3

0 µe1 (λ +2µ)e2 µe3 −
[

(λ +2µ)V 2
3 + µ(V 2

2 +V 2
4 )− γµV5

Pr

]











, (111)
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K̃23 =
1

V 3
5










0 0 0 0 0
0 0 0 0 0
0 0 0 −λV 2

5 λe3
0 0 −µV 2

5 0 µe2
0 0 µe3 λe2 (λ + µ)d3










, (112)

K̃33 =
1

V 3
5











0 0 0 0 0
0 −µV 2

5 0 0 µe1
0 0 −µV 2

5 0 µe2
0 0 0− (λ +2µ)V 2

5 (λ +2µ)e3

0 µe1 µe2 (λ +2µ)e3 −
[

(λ +2µ)V 2
4 + µ(V 2

2 +V 2
3 )− γµV5

Pr

]











, (113)

with
K̃21 = K̃T

12, K̃31 = K̃T
13, K̃32 = K̃T

23. (114)
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